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Abstract

In research intensive industries, firms’ ability to growth, stay ahead or catch-up with
competitors, crucially depends on their ability to master the evolution of technology. This
problem is made more complex by the fact that industries use a variety of different tech-
nologies, whose life cycles may not be synchronized. Therefore, to understand industry
evolution, and firms long-term performance, we first need to recognize the heterogeneity of
technology domains underlying a given industry. Then, we need to study the relationship
between the life cycle of a technology domain and the comparative advantage of new in-
novators and incumbents. We contribute a new method to define technology domains and
identify their life cycle stage. The method is based on a dynamic analysis of patent citation
networks. We apply it to study the evolution of the Semiconductor Industry over the pe-
riod 1975-2006 and measure the strength of comparative advantage of incumbents and new
innovators.
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1 Introduction

In this paper, we analyse the relationship between the life cycle of technology domains and
the revealed technological capabilities of incumbents and new innovators. We study the global
Semiconductor Industry as an example of a research intensive industry in which new players
from latecomer countries repeatedly managed to narrow the skills gap or even overtake previous
industry leaders. The sustained fast economic growth and the enormous structural transforma-
tion experienced by countries like the Asian Tigers (Hong Kong, Taiwan, South Korea and
Singapore) and China have been explained by a variety of points of view. A widely accepted
explanation points to the role played by technology and knowledge upgrading as engines of eco-
nomic growth and sources of sustained international competitiveness (Kim and Nelson 2000).
The development of indigenous skills and the access to foreign technology are the key factors
behind the process of catching-up (Fagerberg and Godinho 2005; Hobday 2000; Perez 1988;
Verspagen 1991; Abramovitz 1994). Technology is in continuous evolution and the direction
and speed of technical change, by creating and replacing capabilities at different paces, de-
termine the availability of entry and catch-up opportunities (Lee, 2013; Lee and Lim, 2001
and Dosi, 1982) and changes in industry structure (Breschi et al. 2000; Malerba and Orsenigo
1997; Schmookler 1962). Therefore, the life cycle of technology domains and firms’ ability to
constantly have strong capabilities in emerging technologies are determining factors that shape
industry evolution and determine the fate of growth, sustained leadership or catching-up efforts.

The goal of this paper is to improve our understanding of the relationship between tech-
nology domain life cycle and the comparative advantage of new innovators. Following Dosi’s
definition of technological trajectories, we conceptualize technology evolution as the process
of solving engineering problems (Dosi 1982). This involves searching for solutions, possibly
by trying different approaches. We argue that the emergence of an accepted approach to prob-
lem solving and the stability of the set of problems is the technology domain level analogy to
the rise of a dominant design at the product-level. We define technology domains as areas of
research that define a set of common engineering challenges that are tackled applying similar
mindsets and toolboxes. Some of these engineering challenges may be common to several tech-
nologies that may be embodied in multiple products. This highlight how technology, product,
and industry life cycles are deeply intertwined.

Despite the variety of theoretical contributions to the literature of technology life cycle and
dominant-design, few attempts have been made to empirically and objectively trace the evolu-
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tion of technology. The few notable contribution to the study of life cycles at the technology
level are the work by Jaffe and Trajtenberg 2002 and Lee 2013. Jaffe and Trajtenberg 2002
analysed the average time lag between cited and citing patents. They found that, on average,
the number of citations to a given patented invention rapidly increases up to 3-4 years after
the patent has been granted. It then relentlessly decreases. Lee 2013 argues that the citation
lag trend is a good proxy of the technology life cycle as it reveals for how long the piece of
technical information represented by a given patent keeps being a useful source of knowledge
for improvement of technology. We argue that to link the technology and the industry level it is
necessary to analyse the life cycle of the system of technologies within an industry, rather than
focusing on single sub-classes. Furthermore, looking only at the citation lag provides a measure
of the speed of change but do not provide a picture of the scope and direction of change. In
this paper we contribute a method to identify technology domains within a common industry
and analyse their life cycle. We can trace the stage of the evolution of a technology domain
by looking at changes in the attractiveness of the engineering problems pertaining the given
domain and the stability of the approaches followed to tackle them. Our method is based on
a dynamic analysis of complex patent citation networks. We focus on the semiconductor in-
dustry as a case study as it provides a particularly suitable ground for testing such relationship.
Industry leadership has changed over time, because of different waves of successful latecomer
entrance. The industry is characterized by a persistently evolving knowledge base, increasing
global competition and short business cycles (Brown and Linden 2011). Furthermore, given the
focus of this paper, it is particularly interesting to notice that the technology life cycle of semi-
conductors is considerably shorter than other industries, as shown by Lee 2013. This has been
proposed by Lee as a key explanation of the success of catching-up efforts due to the speed of
knowledge replacement. Therefore, it is crucial to understand in which semiconductor technol-
ogy domains new entrants specialize, determine the stage of their life cycle and assess whether
latecomers comparative advantage progressively upgrade to emerging domains. In particular,
we answer the following research questions: (i) In which life-cycle stages new innovators have
a comparative technological advantage over incumbents? (ii) Are there significant differences
in the revealed technological advantage of new innovators from different countries?

We identify domains and trace their evolution by analysing patent citation networks. Patent
are understood as proofs that an innovative solution to a selected engineering problem has
been found. Citations identify the best previously available solutions that are similar to the
patented invention. Therefore, they can be interpreted as highlighting the most similar existing
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approaches followed to tackle the particular engineering challenge. We use data from the sec-
ond version of the NBER patent citation database (Hall et al. 2001), which covers the window
of time between 1976 and 2006. To reduce noise in the data coming from the highly skewed
distribution of patents’ technical and economic value (Gambardella et al. 2008; Hall et al. 2005;
Reitzig 2003), we first identify the set of patents that are most influential from the point of
view of the historical trajectories of technology development within the Semiconductor indus-
try. This is done by extracting the ’Network of Main Paths’, which can be seen as the backbone
of the citation network. This approach has been originally developed by Hummon and Dereian
1989 and subsequently refined and applied in recent work by (Verspagen 2007; Fontana et al.
2009; Martinelli 2008, 2009; Bekkers and Martinelli 2010). Within this set of patents, we iden-
tify several interrelated technology domains using a community detection method proposed
by Newman 2004. Then we develop a methodology to describe the life cycle stages of these
domains according to the attractiveness of their engineering problems and the stability of the
approaches followed to seek the solution. The basic intuition is that the centrality of the prob-
lems pertaining a given domain decreases over time, while the stability of the approaches to
problem-solving increases.

The paper is structured as follows. First, we present a short overview on the technology
and industrial dynamics of the global semiconductor industry (Section 1.2), to make the reader
familiar with the background of this study. Then we introduce the theoretical framework that we
followed to define technology life cycle (Section 1.3) and the necessary methodological steps
to identify technology domains and infer the stage of their life cycles (Section 1.4). Finally, we
present the results that answer the two research questions (Section 1.5).

2 Review of the Literature on Industry, Product, and Tech-
nology - Life Cycles

Industry, product, and technology - life cycles are fundamentally related. They can be seen as
being the result of a nested fuzzy system in which industries are collections of products that
embody and are produced by several different technologies. However, the same technology
can be used to make or can be part of several products, which themselves can have a central
role in more than one industry. Therefore, confusing the three levels of analysis can generate
conflicting predictions on the specialization patterns of new entrants. Industry life cycle theory
(Klepper 1997, 1996; Afuah and Utterback 1997; Jovanovic and MacDonald 1993; Suarez and
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Utterback 1995; Utterback and Abernathy 1975) predicts higher entrance to occur in the earlier
stages of the life cycle. This is when there are plenty of technological opportunities and a dom-
inant design has yet to emerge. Consequently, the entry barriers are weaker due to the lack of
cumulative technical and market knowledge advantage. Innovation management literature has
also extensively analysed specialization of new entrants with respect to industry and product
life cycles. However, the latter is even more specific than industry life cycle theory in predict-
ing the type of technologies that are instrumental for successful entrance. Christensen disrup-
tive technologies are the favourite competitive battlefield of new innovators (Christensen 1997;
Christensen 1993). There are two main conceptual puzzles in these branches of literature. First,
these theories focus exclusively on entrance from advance countries. Second, the theoretical
framework does not clearly distinguish at which level between industries, products and tech-
nologies the mechanisms behind the life cycle operates. The literature provides two alternative
theoretical approaches that focus on global competition: international product life cycle theory
and catching-up. The international economics literature on product life cycle (PLC), sparked
by the seminal contribution of Vernon, predicts that latecomers are more likely to specialize
in obsolete technologies that are progressively abounded by leader countries and whose pro-
duction moves to developing countries to exploit their comparative advantage based on cheap
labour (Vernon, 1966). Recent findings in this strand of literature follows Vernon’s framework
(Bergek et al. 2013; Karniouchina et al. 2013). Vernon’s theory has raised some criticisms,
which focused mostly on the fact that today’s production is characterized by fragmented value
chains, and modular technologies and can therefore happen in more places simultaneously.
Catching-up and technology regimes literature emphasizes how innovative entrance depends on
changes happening at the technology level, as the introduction of new technologies or radical
change in existing ones create higher technological opportunities which, ceteris paribus, tend to
favour the entry of new innovators (Lee 2013; Lee and Lim 2001; Breschi et al. 2000).

A unifying framework that provides a systemic perspective relating industries, products and
technologies is provided by Murmann and Frenken 2006. Industries can be seen as collection of
vertically and horizontally related products which themselves are made of several components
whose design and manufacturing require distinct technologies. Industry life cycle therefore
depends on the life cycle of the underlying set of products. There is a wide agreement in
the literature that a key factor that shapes product life cycle is the emergence of a dominant
design after a phase of fluidity that involves searching several possible design paths (Afuah and
Utterback 1997; Suarez and Utterback 1995; Anderson and Tushman 1990; Utterback 1994).
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Yet products do not necessarily offer the best resolution to study search across the design space
and the emergence of orthodoxy in the design approach. Products are systems of components
and sub-components whose development follows own technological trajectories. Therefore,
the life cycle of technology domains clearly affects product and industry life cycles. A micro-
founded analysis of entrance and catching-up must necessarily focus on studying change at the
technology level, as it is at this layer that learning happens. The theoretical framework that
guides our analysis is presented in the following section.

3 Theoretical Framework

3.1 Definition of technology domains and their relation with products and
industry

The answers to the questions “how does technology change?” and “how are products and indus-
tries affected?” have been seek in a variety of ways. As we have discussed in literature review
section, the prevailing belief is that the emergence of a dominant product design is the selection
mechanism that stops the search process and, consequently, reduces the number of players in
the competition arena. This allows focusing innovative efforts to process innovation, which, by
making the product cheaper, sparks its adoption. Eventually the fossilization of product design
constrains the generation of novelty and lead to the emergence of decreasing returns to adoption.
This eventually increases the probability that the dominant design is re-thought or abandoned
in search of a new product to introduce to the market.

This is an accurate representation of the life cycle of a single product and there is evidence
that the pattern of market entry and exit in the industry is consistent with the predictions of
product life cycle theory (Klepper 1996, 1997). Yet its application to industries with a large
heterogeneity of products, some of which are highly customized and based on highly modular
technologies, is limited by conceptual difficulties. Semiconductor devices are made by several
independent components. Some of them contribute to different products. As such, their un-
derlying engineering problems and the way solutions are seek affect the life cycle of several
products. Second, in high-tech industries long-run market survival depends on technical capa-
bilities Lee and Lim 2001. Therefore, innovative entry (and exit), defined as the ability to tap in
the right technological trajectory, is more informative of a firm’s long-run success than market
entry. The latter could purely be due to a transitory cost-advantage, in particular for catching-up
firms. In an industry characterized by a multi-technology space, a firm’s ability to persistently
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come-up with inventions that shape the direction of future technological development, depends
on its skillfulness in mastering the life cycle of several technology domains. We therefore claim
that, for industries like Semiconductors, life cycles should be studied at the technology level.

We define a technology domain as an area of engineering research bounded by a set of
common design problems and by similar approaches to problem solving. We adapt Murmann
and Frenken 2006 nested hierarchy approach to theoretically link the technology domain level
to the product level. This theoretical exercise does not have to be seen as an attempt to formally
build a correspondence table between products and technologies. More humbly, the goal of this
section is to briefly illustrate the systemic nature of technology and the relationship between
industry, product and technology domains’ life cycle. The purpose of this is to stress how the
most insightful unit of analysis to understand the evolution of comparative advantage in the
Semiconductor Industry is the technology level. Our theoretical framework is illustrated in
Figure 1.

Figure 1: Nested hierarchy of life cycles

An industry is made by a collection of products. There is general agreement in the recent
economic Murmann and Frenken 2006, engineering (De Weck et al. 2011) and complex sys-
tem (Arthur 2009) literature in describing products as systems of nested hierarchies made by
layers of components and parts. The degree of modularity of the system determines whether
components can be designed and produced in isolation from each other’s. Technology domains
can span the system both vertically and horizontally or they can be confined to a given com-
ponent or product. This ultimately depends on the generality of the underlying engineering
problems. For instance, miniaturization or reduction of energy-consumption, are very general
and ubiquitous problems. The former carries a variety of related sub-problems like velocity sat-
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uration or degradation due to overheat, as the technology scaling reaches channel lengths less
than a micron. These problems are not isolated and related to a single product or component.
In contrast, they affect the whole system. Change at the domain level propagates in the system
along multiple paths, generating positive feedbacks or creating cascades of design problems,
as shown by (Giffin et al. 2009). Therefore, the search for solutions to key design challenges
ultimately affects the life cycle of components and products. Consequently, incumbents’ and
new entrants’ innovation prospects depend on their technical capabilities and their knowledge
upgrading paths measured at the domain level.

3.2 Theoretical definition of the life cycle of a technology domain

We argue that the evolution of a technology domain can be described by two variables: the im-

portance of the underlying technical problem and the persistence of the variety of approaches
to problem solving. An archetypal description of the evolution of a technology domain is pre-
sented in Figure 2. Let us suppose that the origin of a given technology domain is a break-

through innovation. These innovations bring a completely new set of engineering problems that
are very loosely related with previous solutions. The problem-solving approach is therefore dis-
connected with past experience. This implies that a variety of search strategies is applied to seek
the solution. Breakthroughs are obviously rare and are usually identified as such only ex-post.
Our approach identifies potential breakthroughs ex-ante as clusters of related problems with no
or loose connections with the past that attract a lot of innovative effort by some of the players. In
other words, finding solutions to these problems is considered as an important task. If the under-
lying problems are recognized as important and a path to a solution starts to be envisaged, then
the variety of search strategies starts to decrease. Problem solving begins to be path-dependent
and the persistence of a common approach increases. The underlying problems are still con-
sidered as important but they attract slightly less innovative efforts than before. The domain
moves toward its early development phase. When a given approach is largely recognized as the
most fruitful way of improving the technology by most of the people involved in research in
the particular domain, the technology domain enters in its maturity phase. This consolidates
what is recognized as the stock of useful knowledge. Furthermore, the search of alternative
approaches greatly reduces and the engineering problems underlying the domain become to be
perceived as less important. This can be due to at least three reasons. First valid solutions have
already been found (i.e. technological progress have moved further). Second, technological
development at the product level has taken a different trajectory and other engineering prob-
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Figure 2: Archetypal life-cycle of a given technology domain starting with a breakthrough

lems are now perceived as bottlenecks of progress. Third, the engineering problems start to be
perceived as unsolvable (i.e. progress in the domain has reached a dead end). In any of the three
cases, if a general agreement on the reduced importance of the problem emerges, the domain
moves to a declining stage. Innovative efforts drop dramatically and the remaining gleams of
inventive activity, if still existing at all, follows clearly predefined problem-solving approaches.
This destiny is not ineluctable. Some players might think that searching for better solutions is
still worthy, perhaps because of a different vision of the future development of the technological
trajectory or because of the attempt to improve older generations of a given product or technol-
ogy. This is likely to be the case for players engaged in technological catching-up endeavours.
When this happens, there is a renewed interest in the set of technical problems and a revamp in
the search of alternative approaches. The domain enters into a renewing phase. This type of life
cycle is portrayed in Figure S.1 in the Supplemental Information S.1. If the renewal phase is
successful and the new approaches are promising, a new life cycle might start again. Otherwise
the domain might face permanent decline.

When we described the archetypal life cycle of a given technology domain we assumed it
started with a breakthrough. Besides a successful renewal of an old domain, another excep-
tion to the breakthrough kick off exists. A life cycle might be initiated by the emergence of
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disruptive technology domains. Christensen 1997 defined disruptive technologies as those that
initially perform worse than the current best practices and address a different market but even-
tually outperform current technologies even in their own market. We use the word disruptive to
describe domains whose engineering problems initially do not attract much innovative effort.
Their importance may be overlooked, because an existing solution may not be currently be-
lieved possible. For this reason, a broad variety of approaches to problem-solving is searched in
disruptive domains by those who do believe that a solution may indeed exist. If promising ap-
proaches arise, the importance of the problem and the value of the new engineering approaches
to solve it will eventually be recognized by many players. These domains would then start at-
tracting more inventive effort. Eventually, this would spark the life cycle. An illustration of
a life cycle starting with a disruptive stage is reported in the Supplemental Information S.1 in
Figure S.2.

The exploration of different approaches to a problem, has a clear theoretical relationship
with the concept of technological trajectories. A technological trajectory is defined by Dosi
(1982) as the direction of problem-solving activities within a technological paradigm. Yet, al-
though conceptually related, there is an important difference between the two concepts with
respect to the level of analysis and the way they relate to overall technological progress. Trajec-
tories are typically defined at the product level. They are the results of design choices on which
features of the product to improve, especially when these features are affected by trade-offs (e.g.
computational power vs. energy consumption). Technological trajectory affect and are affected
by the life cycle of technology domains. On the one hand, choices along the trajectory obvi-
ously imply that some engineering problems will be perceived as more important than others
and consequently attract more innovative efforts. Depending on the novelty of the problem, the
urge to find appropriate solutions will either spark a variety of search strategies or follow prede-
fined and more conservative approaches. On the other hand, the solution of problems that affect
several components and/or products, pushes innovative efforts toward some products features
rather than others or might even allow braking the trade-off.

There is also a clear relationship between the life cycle of technology domains and the
catching-up strategies followed by latecomers. Lee and Lim 2001 defined three types of catching-
up: path-following, stage-skipping and path-creating. When the latecomer firm just follows the
same path taken by the forerunner (with a narrowing delay), the catching-up process is said
to be path-following. In contrast, when the latecomer firm learn so rapidly that is able to skip
one or more generations of the technology, catching-up follows a stage-skipping pattern. The
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authors also define path-creating catch-up. This is defined as the situation in which the process
of learning and assimilation of older generations of a given technology by a latecomer firm,
results into significant technical improvements that take a different direction compared to the
current path followed by leaders. The authors argue that stage-skipping and path-creation are
better described as leapfrogging rather than catching-up as they involve doing something differ-
ent from what previously done by the leaders. There is a strong analogy between the life cycle
stage of a given technology domain and the type of catching-up followed by latecomers. Suc-
cessful path-following catching-up would correspond to initially specializing in exhausted areas
and then systematically move backward along the life cycle, by specializing in mature, early-
growth and emerging areas at each subsequent time. If any of the steps would be skipped along
the catching-up process than we could describe it as a stage-skipping type, or leapfrogging.
Taking Lee and Lim’s definition literally, path-creating would correspond to an early special-
ization in breakthrough or disruptive areas, as it reveals that the latecomer is exploring its own
path. However, we claim that specialization in renewing areas also falls into the path-creating
category of catching-up, given the exploratory nature of the learning endeavour.

4 Data

To empirically identify technology domains within the Semiconductor Industry, assess their
life-cycle and investigate the comparative advantage pattern of new innovators and incumbents,
we make use of patent data. We use the second version of the NBER patent citation database
(Hall et al. 2001) containing information on patents granted by the United States Patent and
Trademark Office (USPTO) the period between 1975 and 2006. Since the US is a major market
for semiconductors and still the global center of semiconductor devices design. Therefore,
we can safely assume that whenever important semiconductor-related inventions are created,
the inventor or the company where the invention was made, will eventually apply for a US
patent, even if the invention was made elsewhere. Hence, we believe the pool of US granted
semiconductor patents is representative of the sample of global semiconductor inventions.

To identify all patented inventions representative of the Semiconductor Industry, we rely on
the US Patent Classification System (USPC). Semiconductor technologies belong to the macro-
category “electronics” of the USPC system. They are classified into five different subclasses.
They are the followings: 257: Active solid-state devices (e.g. transistors, solid-state diodes)
438: Semiconductor device manufacturing: process 326: Electronic digital logic circuitry
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505: Superconductor technology: apparatus, material, process 716: Design of semiconductor
devices

To identify patent ownership, we use harmonized patent assignee names included in the
2006 version of the NBER-USPTO database. We further manually cleaned typos and incon-
sistencies in the way the company name is reported. Note that no effort was made to merge
subsidiaries or divisions belonging to the same parent company. This is done on purpose, as
these different entities can follow very different inventive strategies and have different techni-
cal capabilities. However, we assign patents to countries based on the country reported in the
residential address of the first inventor.

4.1 Extraction of the Network of Main Paths out of the whole patent cita-
tion network

The distribution of patent technical and economic value is known to be highly skewed (Silver-
berg and Verspagen 2007; Trajtenberg 1990). Only a minority of patented inventions have real
influence on the course of technical change and have a significant economic value. Therefore,
we argue that, for the purpose of identifying the technology domains underlying a given industry
and analyze their life cycle, it is important to remove technically unimportant patents from the
sample. Selecting only the most technologically influential patents allows to reduce the noise
in the data caused by marginal patents and their citations. We therefore employ a methodology
called Network of Main Paths (NMPs), to extract the backbone of a patent citation networks.
The NMPs identifies the most central routes through which information flows in large cita-
tion networks (Martinelli 2009; Fontana et al. 2009; Verspagen 2007). When applied to patent
citation networks this methodology allows analysing the evolution of the main sequences of
technological improvements in a given industry or technological area. The first building block
of this approach relates to the meaning of patent citations. As described in the USPTO Manual
of Patent Examination Procedure (MPEP)(USPTO 2015)1, citations highlight which are the ex-
isting functionally-related inventions that provided a prior solution to a particular engineering
challenge. If patent A cites patent B then the former improves upon the latter. In other words,
patent B represents the state-of-the-art concerning the particular technology described in patent
A at the moment in which patent application A was filed. Therefore, citations can be interpreted
as a measure of technological relatedness and provide insights on the direction of technological

1The USPTO MPEP is available online at this website: http://www.uspto.gov/web/offices/pac/mpep/
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change2. Obviously, a patent can cite and be cited by many other patents. Hence, if we want
to follow the main trajectories of technology evolution among a set of patents, we first need to
decide which direction to take at every junction. This is what the algorithm to define the NMPs
does. First, we calculate the weight of every citation using the search path node pair (SPNP)
algorithm, developed by Batagelj 2003 based on the original measure introduced by Hummon
and Dereian 1989. The SPNP returns the number of times that each citation link lies on all
possible paths connecting any node to anyone else. This is easily calculated by multiplying
the number of patents that reach (through direct and indirect citations) the cited patent by the
number of patents that are reached (directly or indirectly) by the citing patent. Therefore, a
high SPNP weight indicates that the given citation and the two patents involved are located in
a highly connected and connecting area of the network. This means that the given citation has
a strong technological influence, as many paths of technological improvement pass through it.
The NMPs is then identified by following the paths emanating from start nodes (nodes that are
cited but not cited), taking at each junction the direction of the citation which carries the highest
weight, till an end point (a node who cites but is not cited) is reached. This process can be re-
peated several time by accumulating windows of time, (e.g. from time t till t+1, then from t till
t+2, and so on). By computing the NMPs for each period we can observe how the entrance of
young patents at each point in time affects the presence of old ones in the network of main paths
(i.e. the persistence of old technological trajectories). When newly granted patents connect to
previously well-connected patents, technical improvements follow the same paths of citations
of the previous period(s). In this case, the technological trajectories are said to be stable and
cumulative. We interpret this case as an instance of stability of problem-solving approaches. To
the contrary, if the new patents connect to paths that were previously underexploited the patent
composition of the NMPs changes and the technological trajectories are affected by a discon-
tinuity. We interpret the latter as a case of search of alternative problem-solving approaches.
Therefore, at each point in time, there are three types of patents that are part of the NMPs:
patents granted after the end date of the previous time partition of the network (recent patents),
older patents that appeared in previous time snapshots of the NMPs (old persistent patents),
and older patents that show-up for the first time in the NMPs (old disruptive patents). This

2From this perspective, the well-known fact that many, if not most, of the citation are added by the patent
examiner rather than the applicant plays in our favor. Indeed, patent applications are examined by expert in
the field of the technology described by the patent. Therefore, citations added by examiners can be seen as an
even more objective measure of technological relatedness among patents. Obviously examiner-added citations are
instead much more of a problem if one wants to use them as a measure of knowledge spillover between patent
assignees. This does not apply to this work.
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information is very important to understand our method to determine the life cycle stage of a
technology domain. We explain the method in the next section.

We apply the NMPs methodology to the whole citation network of semiconductor technology-
related patents granted by the USPTO between 1976 and 2006. First, we extract all US patents
belonging to the following five US technology sub-classes: 438–process, 257-product, 326-
materials, 505-programmability, 716-design. Then we create the citation network and extract
the largest connected component. The latter is used to feed the NMPs algorithm that extract the
most important paths of citations based on the SPNC weights and identify the patents laying on
them. The largest component of the resulted reduced network is composed by the set of patents
that we claim being the most influential from the perspective of technical progress. This is true
for all time periods in our dynamic temporal analysis of the NMPs, except for the last 6 years in
our time window (2001-2006). At the beginning of the 2000s, newly granted patents connected
more to the second largest component of the NMPs than to the first. This means that a change in
the ranking of engineering problems’ importance occurred in this period. Priority of innovative
effort shifted from those related to domains pertaining to the largest component to those found
in the second one. The analysis of patents titles and abstracts revealed that technology domains
found in in the second component focused on engineering problems related to LCD displays,
in particular for e-readers and flat televisions. This suggests that the second largest component
of the NMPs is composed of domains more related to entertainment and portable devices than
to desktop computers and laptops. What we observe in this period could therefore be a case
of overlap between the life cycle of products and technology domains. Given the importance
of engineering problems related to the second component of the NMPs in the last period under
observation, we include it in the analysis performed in the rest of the paper. The final Semi-
conductor patent dataset, which we use in this work, is then made of 114097 patents granted by
the USPTO over the period 1976-2006. For more information, Table S.1 in the Supplemental
Information S.2 reports the network size at each layer of data reduction. Figures showing the
main component of the NMPs for each of the six periods are also reported in the Supplemental
Information S.3 (Figures from 3 to 8). The technology domains are highlighted in different
colours (these areas have been identified through the community detection procedure explained
in Subsection 5.1).

Selecting only the most technologically influential patents, besides cleaning the data, also
allows distinguishing innovators from inventors. By the former, we mean players that are able to
generate novelty that is later recognized as useful from the point of view of technical progress.
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The latter are players whose inventive output does not attract sufficient attention to determine
the course of technology evolution. In this sense, we use the term innovation in a Schumpeterian
way, implying that inventions became innovations only when they are recognized as useful and,
therefore, start diffusing. We further distinguish between incumbent and new innovators. Note
that the use of the terms “new innovators” or “incumbent innovators” rather than new entrants
or simply incumbents is purposely made. Industrial organization theory would distinguish be-
tween firms that have started producing for the first time (new entrants) or have been doing it
for a while (incumbents). Since we look at the technological dimension rather than the man-
ufacturing one, we characterize firms by their ability to generate technological inventions that
lately attracted a significant stream of engineering improvements. A figure which breaks down
patent assignees in our final dataset by incumbent and new innovators over time is reported in
the Supplemental Information S.4 (Figure S.9).

5 Methodology

5.1 Empirical detection of technology domains

We have defined technology domains as areas of research characterized by commonality of
problems and approaches. We have also discussed how citations between patented inventions
highlight functional and technical similarity between the citing and the cited patents. It follows
that network community detection methods can be applied to identify technology domains. It
has become a common practice to analyse large networks’ community structure in order to split
them into partitions. Partitional and agglomerative hierarchical clustering methods have been
defined to identify such structure. We use a method proposed by Newman 2004 based on the
concept of modularity. Modularity is defined as the fraction of links (citations in our case) in
the network that falls within a community. The algorithm maximizes modularity. This allows
identifying communities as areas of the networks whose nodes are more related to each other’s
than they are to nodes outside the community. Technical details about the Newman’s community
detection algorithm can be found in the Supplemental Information S.5, where we also validate
the quality of the algorithm’s results. We chose to use the Newman algorithm because, contrary
to other popular community detection algorithm like, for instance, the Newman and Girvan
2004, the former provides a benchmark to evaluate the quality of the partition and does not
require to arbitrarily choose the number of communities to be identified. Indeed the modularity
maximization procedure and the comparison with equivalent random networks returns the best
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Table 1: Basic statistics for the technology domains identified by Newman’s algorithm.

partition of the network analysed, without assuming a pre-existing community structure.
Some basic statistics about semiconductor technology domains identified by Newman’s al-

gorithm are reported in Table 1. The high values of modularity (always higher than 0.85) reveal
a strong underlying community structure within the largest component (and the second one in
the last period) of the NMPs. This provides empirical support for the existence of several, rela-
tively separated, areas of research within the Semiconductor Industry. The algorithm identifies
a number of domains varying between 14 and 15 over the periods observed. The size of the
largest area changes quite a lot. So does the standard deviation and the coefficient of variation.
The large size differences among technology domains hint to the importance of analysing their
life cycle.

In the next subsection, we explain how we identify the life cycle stages of technology do-
mains that we have just identified.

5.2 Characterizing technology domains by their life cycle stage

Our method to identify the life cycle of technology domains is based on the existence of three
types of patents that are found in the NMPs at each point in time: young, persistent old and
new old. Young patents are those granted in the last period of observation. Persistent old
patents are those that have already been part of the largest component of the NMPs at least
once in the periods before the one observed. In our analysis, we focus on six periods: 1976-
1980, 1976-1985, 1976-1990, 1976-1995, 1976-2000 and 1976-2006. Let us take, for instance,
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the last period 1976-2006. For this period, the three patent categories can be described as
follows. Young patents are those granted after the end of the previous period (i.e. from 2000
till 2006) which connects to the main component of the NMPs. Persistent old patents are those
who showed up in the main component of the NMPs at least once in one of the previous five
periods. New old patents are those granted before 2001 which had never been part of the main
component of the NMPs before. The distinction between persistent old patents and new old
patents allow us to distinguish domains where there is no search of alternative approaches,
from those who are exploring a new path. Furthermore it also help us to differentiate between
areas which are young but nevertheless building on previously explored technological paths
and young areas which are not related to any technological solution that have been developed
in the past. Figure 3 shows the relationship between the type of old patents and the age of the
technological areas. Each circle stands for one of the technology domains identified over the
six periods. Its position on the horizontal axis reflects the age of the area. The vertical axis
coordinate is given by the percentage of old new and old persistent patents found in the domain
(each domain counts for two circles in Figure 3). Dashed lines are lines of best fit obtained by
linear regression using a second degree polynomial as mathematical model. The figure shows
that young domains are more likely to build on previously unexploited technological solutions
(new old patents) than known ones (persistent old patents). Therefore, search across possible
problem-solving approaches is higher. To the contrary, the more a domain grows old, the more
likely it will follow a stable and previously defined approach to problem solving. The two curves
closely resemble the patterns sketched in Figure 3. This confirms our theoretical predictions
based on the cumulative nature of technological change. Figure 3 also clearly shows that patent
composition within a technological area changes drastically with age. Our classification method
follows the intuition that it is possible to categorize domains’ life cycle stages based on the
relative number of young, persistent old and new old patents, they are composed of. This allows
defining all the stages of the life cycle of technological areas, from emerging to declining.

Based on the theoretical framework discussed in Section 4.3 and the empirical findings
shown in Figure 3, we propose the following theoretical correspondence between each life
cycle stage and the patent composition that reflects it.

Breakthrough

Breakthroughs break the usual pattern of knowledge cumulativeness that normally charac-
terizes technical change. Their relationship with previous solutions is very little if existent. We
argue that domains in their breakthrough stage are characterized by a large number of young

17



Figure 3: The relationship between persistent old patents, new old patents and the age of semi-
conductor technology domains

patents and a few new old and persistent old patents if at all.
Disruptive emerging areas

We argue that disruptive technological areas are characterized by the presence of several
young patents that builds largely on previously disconnected patents and very little on persis-
tent old ones. This reflect the high search across possible approaches to problem solving which
characterize emerging areas but also the peculiar focus on previously unexploited existing solu-
tions which make the domain disruptive in nature. The other marking trait of disruptive domains
is that the underlying set of problems initially does not receive much attention. The latter two
characteristics distinguish disruptive domains from breakthroughs.

Early development

If successful, disruptive or breakthrough domains are developed further and move to a stage
of early growth. During this stage, the attractiveness of the area of research is high and the
technological trajectory starts to consolidate. Therefore, the number of young patents is high,
the presence of persistent old patents increases and the one of new old patents decreases.

Maturity

Maturity is similar to the early development stage with the only difference that the domain
now attracts much less innovative efforts (i.e. fewer young patents connect to it) and techno-
logical change becomes increasingly cumulative. This means that the number of persistent old
patents keeps growing, to the detriment of the exploration of alternative approaches.

Renewing
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After the maturity stage the evolution of a given technology domain is at a crossroad. The
development of the given technology could be either stopped or get new vigour. In the former
case, the domain begins exhausting. In the latter, it enters into a renewing stage. In this case,
alternative paths are explored to avoid obsolescence. This might begin a new life cycle or just
extend the life of a technology domain for a short while without avoiding its imminent decline.
The renewing stage is characterized by a few young patents that build extensively on new old
ones and on some persistent old patents.

Exhausting

Exhausting (or declining) areas are characterized by very few, if any, young patents, a large
number of persistent old patents and almost no new old ones.

At this point, we have a theoretical definition of the life-cycle stages of technology domains
and the preliminary characterization of them according to the relative number of young, old per-
sistent and old new patents that is found in each domain. To make our methodology operational
we need a practical way to formally distinguishing one stage from the other. Consider a trian-
gular shaped space in which the horizontal axis measures the relative number of old persistent
patents in a given domain and the vertical axis reports the relative number of young patents. The
structure of the space is such that domains can only locate in the lower triangle that is defined
by the axis and the diagonal connecting the maximum values of the two axis (i.e. 100). This
is because the relative number of patents per each category is constrained between 0 and 100.
Therefore, by construction the orthogonal distance of each domain from the diagonal measure
the relative number of old new patents. We call such space the life-cycle space of technology
domains as the entire life of a given domain can be described by movements along this space.
The space is reproduced in Figure ??. However, before to discuss the figure, let us first explain
step-by-step the process behind its creation. We first need to draw borders on such space that
will help us identifying the areas corresponding to each life-cycle stage. To accomplish this
task we need to formally quantify the relative number of young, persistent old and new old
patents that a domain must have for its life cycle to be in a given stage. Quantify how much is
a lot is a task that is best done by comparison. Therefore, we first take all domains identified
by Newman’s algorithm over the periods 1976-19853, 1976-1990, 1976-1995, 1976-2000 and
1976-2006, we look at the percentage of young, persistent old patents and new old ones in each
area and then we plot the distribution of these percentages. This is shown in Figure 4, where

3We cannot use the first period, 1976-1980 because, being the initial period, by construction all the areas are
entirely composed by young patents.
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each of the domains is split into three observations indicating the percentage of young, new old
and persistent old patents it is composed of. On the horizontal axis, we have the values for the
percentages of each category of patents that are part of one of the technology domains, whereas
on the vertical axis we have the cumulative percentage of the distribution, meaning the percent-
age of observations with a value smaller than the value on the horizontal axis. We drew two
horizontal dashed lines to clearly separate the top 20 percent from the mid-60 percent and the
bottom 20 percent of the distribution. This allows us to identify the border values for the first
quintile and the last quintile. For instance, if we look at the distribution of the relative number
of young patents among all technology domains we see that 20 per cent of the domains have
less than 1.14 per cent of young patents, 60 per cent have between 1.14 per cent and 49.35 per
cent of them and 20 per cent have more than 49.35 per cent of young patents. For instance, this
means that a given domain can be said to have many young patents if more than 49.35 per cent
of its patents are young. In this case, the remaining 50.65 per cent is distributed between new
old patents and persistent old ones. The same exercise can be applied to new old patents and
persistent old ones. In the former case 20 per cent of the domains have less than 11.11 per cent
of new old patents, 60 per cent have between 11.11 per cent and 45.57 per cent of them and 20
per cent have more than 45.57 per cent of young patents. Finally, if we look at the distribution
of the relative number of persistent old patents we see that 20 per cent of the domains have less
than 11.97 per cent of them, 60 per cent have between 11.97 per cent and 86.67 per cent and
20 per cent have more than 86.67 per cent. It is important to notice that there are no domains
purely composed by young or new old patents. Nevertheless, a few are entirely made of persis-
tent old patents. From a NMPs methodological point of view we can argue that a domain purely
made by young patents or by new old ones would be disconnected from the main component of
the NMPs by construction and therefore not observed. To the contrary, albeit rarely, domains
entirely composed by persistent old patents can be found in the main component of the NMPs.
They indicate technological ancestors upon which newer solutions build.

Now that we have more precise quantities of young, new old patents and persistent old ones,
we can use them to elaborate a more precise definition of the life cycle stages of technological
domains. Table 2 reports the thresholds that define the amount of each type of patents to be
found in a given domain for it to be classified in one of the life cycle stage reported in the left
column. We call this thresholds quantile borders. For instance, for a domain to be classified
as a breakthrough it needs to have at least 49.35 per cent of young patents, less than 45.57
per cent of new old ones and less than 11.97 per cent of persistent old patents. However, the
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Figure 4: Empirical cumulative distribution of the percentage of young, new old, and persistent
old patents for all the technology domains in the periods 1976-1985, 1976-1990, 1976-1995,
1976-2000 and 1976-2006.

Table 2: Patent distribution quantile borders by patent type and life cycle stage.
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Figure 5: The technology domains’ life cycle space

quantile borders alone are not sufficient to determine life cycle stages. The main reason is that,
being thresholds, quantile borders suffer from the drawback that areas that lay very close to
the border might actually be more similar to the areas located on the other side of the border
than to the other areas located on the same side. This problem is similar to the one of defining
homogeneous groups of people living in areas whose borders have been set on paper, without
considering the common characteristics of people living close to the border. In other words, we
would like to have borders that respect the geography of the life-cycle space. Therefore, the
initial quantile borders are used to calculate centroids, which serve as basins of attraction. To
sum up, first we calculate the quantile borders for the distribution of the percentage of young,
new old and persistent old patents for all the domains in the periods 1976-1985, 1976-1990,
1976-1995, 1976-2000 and 1976-2006 (Table 2). Then we use them to preliminary identify
regions of the life-cycle space that are coherent with the theoretical description of the life cycle
stages of technology domains and the empirical distributions of young, persistent old and new
old patents. Afterwards we calculate the centroid for each of the preliminary defined areas of the
life-cycle space. Finally, we compute the distance to each of the centroids for each technology
domain identified through Newman’s algorithm. The life cycle stage of each technology domain
is then identified by assigning each domain to the closest centroid. This procedure is shown in
Figure 5.
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Each node stands for one of the technology domains identified in Section 4.2. The size of
the node is proportional to the size of the given domain measured by the number of patents.
The location of a domain on the life-cycle space is informative of its patent-composition and
therefore of its life-cycle stage. In Figure 5 red lines highlight quantile borders reported in
Table 2 and centroids are marked with a red ‘x’. Domains that share the same colour fall within
the basin of attraction of the same centroid. This means that they are closer to that centroid
than to any other one and therefore are in the life-cycle stage indicated by the centroid. Note
that by connecting centroids of subsequent life cycle stages and tracking the evolution of the
relative number of young, old persistent and old new patents, curves similar to those reported
in Figure 2 emerge. This highlights the strong connection between the theoretical description
of the life-cycle of technology domains and the methodology used to trace it.

Now we have a classification of the life cycle stage of each technology domain. To test
its logical consistency we trace movements from each life cycle stage to the other ones. Of
course, for our classification to be coherent, we should observe movements consistent with
time. This means that, for instance, patents that are classified into a technology domain in its
early development stage in period T should be mainly part of a domain classified as mature in
the next period. Some might still be found in an early-development stage. This would indicate
that the life cycle of that domain is relatively slow. Some others might jump over stages and
be found in renewing or exhausting domains. This would indicate that the life cycle of that
domain moved faster in the period observed. The crucial aspect is that they should not be found
in large numbers in an earlier stage, otherwise the time consistency of our methodology would
be broken. A small number of patents could actually move back to an earlier stage but this
can only happen when some patents from one domain serve as foundation for a younger one
in the next period. This possibility is intrinsic to the evolution of communities as defined by
Newman’s algorithm and the network of main path approach. However, this cannot happen
in large numbers because otherwise the new domain would not be younger than the original
one and would then be classified in the same life cycle stage than the latter, or in one of the
followings.

Table 3 shows how many patents from domains which, in period T, were in one of the life
cycle stages listed on the rows moved, in the next period, to any of the domains whose life
cycle stage in T+1 is indicated in the columns. The table clearly proves that our methodology
is logically consistent as most of the patents follow the expected movement to “older” life cycle
stages (to the right of the diagonal) and very few moves to “younger” domains whose life cycle

23



Table 3: Movements from one life cycle stage to the others over consequtive periods.

stage is antecedent the one of origin (to the left of the diagonal). Having proved the consistency
of our methodology, we can now introduce the answers to the paper’s research questions.

5.3 Measuring comparative advantage along the life cycle

In the introduction of our paper, we raised two research questions about the role played by
incumbent and new innovators along the life-cycle of technology domains. In order to anal-
yse aggregate comparative technological advantage we propose an original index that returns
a macro-aggregation of micro-comparative technological advantage of individual firms. Our
specialization index, which we call SPEC, builds on the well-known revealed technological ad-
vantage index (RTA). The RTA is a specialization index defined by Soete 1987, which builds
on the Ricardian concept of comparative advantage and, more precisely, on the revealed com-
parative advantage index as defined by Balassa 1965. The intuition behind the RTA is that
even if a given entity (countries, firms, geographical regions) might have less patents than other
entities in absolute terms, there might still be areas of technology in which it enjoys a com-
parative advantage. This means that such entity could be able to produce comparatively more
patents in a given technological area than in the overall industry. Indeed, the index reveals the
domains in which a given entity performs comparatively better. This reflects the entity’s com-
parative advantage in terms of research productivity in those domains. Neoclassical economic
theory would suggest that agents (firms or countries) should specialize in those domains where
they enjoy comparative advantage. Obviously, this is a static suggestion that does not take into
account the possibility of knowledge upgrading. Our use of the SPEC index is intended to
investigate in which life-cycle stages agents’ capabilities significantly differ, in particular be-
tween new and incumbent innovators. However, it must not be understood as a suggestion that
agents should necessarily specialize in those domains permanently. To the contrary, in Section
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4.5.2, we seek evidence of knowledge upgrading by looking at how the revealed comparative
advantage changed over time. The original version of the RTA index is calculated as follows.

RTAik =

xik∑
i
xik∑

k
xik∑

i,k
xik

(1)

Where xik is entity’s (country or firm) i number of patents in domain k. The RTA index is
equal to zero when entity i holds no patents in the given domain k. When the index is equal to 1
entity i’s patent share in area k is equal to its share in all areas. Values of the index greater than
1 indicate comparative advantage in the given domain. The original version of the index is not
symmetric, meaning that it is bounded to zero for comparative disadvantage in the domain but
unbounded for comparative advantage. This causes problems when one wants to compare the
shape of its distribution for different entities or when the RTA is used in econometric models.
In this work we intend to do the former. Hence, we opt for the symmetric version of the RTA
(SRTA), which is calculated as follows.

SRTAik =
RTAik − 1

RTAik + 1
(2)

In its symmetric version the index ranges from -1 (full negative specialization) to limRTA→∞ SRTAik =

1 (full positive specialization), with values greater than 0 indicating comparative advantage in
the domain. We use the symmetric RTA as a basis to construct an index that gives a micro-
founded picture of specialization patterns at the aggregate level. We first need to estimate the
probability density function (pdf) of the SRTA for each country. The pdf returns the probabil-
ity to observe a given SRTA value if we choose a firm at random out of the sample of firms
belonging to a given country. We use a kernel smoothing function to estimate the probabil-
ity distribution that best fits the empirical (cumulative) distribution of the SRTA for the given
entity. The kernel density function estimates the probability to observe a given SRTA for the
whole range of the SRTA index (from -1 to 1). This improves our ability to compare entities
of different size as the empirical distribution for small entities relies on fewer observations than
for large entities. Once we estimated the probability density function, we compute the SPEC
index as follows.

SPECik =
∑

j=0:0.1:1

SRTAj ∗ ρ(SRTAj)ik (3)
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Our specialization index SPECik is the weighted sum of the probability ρ to observe SRTA
values at the firm level reflecting comparative advantage in the given domain (i.e. SRTA>0).
Indeed ρ(SRTAj)ik is the probability to observe a given SRTA value j greater than zero (i.e.
positive specialization) among the whole sample of SRTA values calculated for the area k for
all firms belonging to the given country i. This probability is multiplied by the strength of
specialization, namely by the value of the SRTAj , which, ranging from 0 to 1, effectively
serves as a weight for the sum. We limit the SRTA range to positive values because we are
not interested in comparative disadvantage. In other words, a large value of the SPEC index
means that, if we extract a firm at random out of the sample of firms from the given country,
that firm has a high probability to be strongly specialized in the area under consideration. It
is important to note that our index focus on the right tail of the distribution of SRTA. This is
an improvement over traditional approaches that calculates the SRTA at the firm level and then
averaged it at the country level. This approach fails to realize that comparative advantages are
rarer than comparative disadvantages. Therefore calculating the average SRTA over the whole
distribution hides the interesting signal contained in the data. Indeed, typically, the average
SRTA would be negative. Given that observing values of the SRTA greater than zero is much
less common than the opposite, the interesting information that the data provides with respect to
comparison across groups is not provided by the mean. Rather, what really matters is how large
the difference between the right tails of the distribution for the two groups is. Comparing the
SPEC index across groups provides this information. Another popular choice in the literature
is to calculate the SRTA for a given country as the aggregate of all of its firms. This approach
is also unsatisfactory in the sense that the aggregate picture might be heavily influenced by a
few large firms, washing away the information about comparative advantages or disadvantages
of small firms. The SPEC index does not suffer from this problem either.

6 Findings

In the two following subsections, we present the findings that answer the two research ques-
tions raised in the introduction of this paper: (i) In which life-cycle stages new innovators have
a comparative technological advantage over incumbents? (ii) Are there significant differences
in the comparative technological advantage of new innovators from different countries? Before
introducing the answers to these questions, we first describe the distribution of new and incum-
bent innovators in the NMPs sample. Table 4 reports the number of firms by geographic origin
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and type (new or incumbent innovators) across the five periods under consideration. To answer
our two research questions, we merge the first and second component of the NMPs in the last
period together, as explained in Subection 4.1.

Table 4: Number of firms by geographic origin and category.

6.1 Comparative technological advantage of new innovators and incum-
bents

In order to have a reliable estimation for the distribution of SRTAs for new and incumbent in-
novators we initially plot all five periods together. This returns 305 observations for the new
innovators and 291 for the incumbents. Figure 6 shows the kernel smoothed cumulative dis-
tribution functions for the two categories of firms. The vertical axis reports the probability to
observe, across the whole sample, values of the SRTA smaller or equal than those reported
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on the horizontal axis. Therefore if one distribution is “smaller”4 than the other for positive
values of the SRTA it means that the former shows a comparatively stronger specialization pat-
tern in the given technology life cycle stage than the latter, as the probability to observe large
SRTA values is higher. A first look at the figure reveals that the shape of the distributions
changes across the different life cycle stages. However, in at least three cases, breakthrough,
early growth and mature areas, the right tail of the distribution for both groups behaves quite
similarly. The difference appears to be stronger in disruptive, renewing and exhausting areas.
We test whether the behaviour of the two populations is statistically different by mean of the
Anderson-Darling non-parametric two-sample test. The table riporting the results can be found
in Supplemental Information S.6 (Table S.2). The test confirms that the distribution of SRTA
for new and incumbent innovators is statistically different for all the life-cycle stages except for
the exhausting one. New innovators seem to have a comparative advantage in disruptive areas
(as predicted by Christensen), whereas incumbents seem to be comparatively stronger, for mild
levels of the SRTA, in renewing and exhausting areas, in line with industry life-cycle theory. A
clearer picture of these differences is shown in Figure 7, where we plot the SPEC index for new
and incumbent innovators.

Our micro-founded specialization index confirms what we inferred from the visual inspec-
tion of the cumulative distributions. New innovators have a greater probability than incumbents
to have a comparative advantage in all life-cycle stages up to maturity. These differences are
all statistically significant based on the Anderson-Darling test. However only for disruptive do-
mains the comparative advantage is considerably strong. For renewing and exhausting domains
the opposite is true and the comparative advantage is hold by incumbents. Yet the difference
is significant only for the former. Therefore, if we only distinguish firms based on whether
they are new or incumbent innovators, without considering their country of origin, the semicon-
ductor industry follow a recommended specialization pattern which is consistent with industry
life-cycle theory, Christensen’s notion of disruptive technologies and Levinthal and March’s
definition of incumbents’ myopia (Christensen 1997; Levinthal and March 1993). Indeed our
findings are consistent with the theoretical prediction that new innovators perform compara-
tively better in technology domains in the initial stages of their life-cycle because incumbents

4The correct terms would be first order stochastic dominance if one distribution were always below the other one
and second order stochastic dominance if the two distributions cross at some point, meaning that one distribution
is below the other only for values greater than a certain threshold. Stochastic dominance refers to the difference in
probabilities to observe values of a given amount. If the distribution for one category is stochastically dominated
(i.e. it falls below the other) for the whole or part of the range it means that the probability to observe large (small)
values of the variable is higher (smaller) than for the other category.

28



Figure 6: Estimated cumulative distribution functions for new and incumbent innovators
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Figure 7: Micro-founded specialization index for new and incumbent innovators

are more likely to face learning traps that make them reluctant to explore new approaches to
problem-solving. Our findings show that this is in general true but the comparative advantage
is particularly strong only for disruptive domains. This answers our first research question. To
tackle the second one we need to further distinguish firms based on their geographical origin.
This is done in the next sub-section.

6.2 Comparative technological advantage breaked down by geographical
origin

In Figure 8 we split new entrant innovators by geographical origin. Once again, in order to have
enough observations for the estimation of the cumulative distribution function we plot all peri-
ods together (this constraint will be removed in the last part of the analysis). Furthermore, for
the same reason, we need to group latecomer new innovators from Korea, Taiwan and Singapore
into a single geographical area. This approach allows revealing the comparative technological
advantages of new innovators from catching-up (i.e. Korea, Taiwan and Singapore), early en-
trant (i.e. Japan) and leader (i.e. US) countries. For the sake of further comparison, we also
plot the distribution of SRTA for incumbent innovators. This distribution is the same shown in
Figure 6.

US and Japanese new innovators follow the same pattern of comparative advantage. The
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Figure 8: Estimated cumulative distribution functions for new innovators from the US, Japan,
and the three Asian Tigers
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kernel estimated cumulative distributions of the SRTA values for US’s and Japan’s new inno-
vators are extremely close in all the life cycle stages with the exception of disruptive areas. To
the contrary, there is a remarkable difference between the distributions of the three Asian tigers
and those of US and Japan, especially at the extreme stages of the life cycle. In breakthrough,
renewing and exhausting areas, the distribution of SRTA values for Korean, Taiwanese and
Singaporean new innovators is always stochastically dominated by the distribution for US and
Japanese new innovators. This means that Asian tiger’s new innovators are comparatively more
specialized in those areas that US and Japanese ones. The opposite is true for disruptive areas,
whereas there is not much difference for early growth and mature ones. It is also interesting
to compare specialization patterns between new innovators, now split by geographical origin,
and incumbents. In technology domains in the early stages of their life-cycle, US and Japanese
new innovators’ specialization patterns closely follow incumbent innovators’ one. On the other
hand, for domains in the late stages (mature, renewing and exhausting), incumbents’ distribu-
tion of SRTA values resembles more to the specialization patterns of new innovators from the
three Asian tigers. This suggests that incumbent strategies are imitated more strongly by US
and Japanese new innovators when it comes to specializing in emerging technologies, whereas
they are followed more closely by Asian tigers’ firms when the decision is about specializing in
relatively older technologies.

As done in the previous section, to give a more precise answer to our second research ques-
tion we look at the micro-founded specialization index for new innovators by geographical ori-
gin. This is reported in Figure 9. Once again, differences in the distributions plotted in Figure
8, which implies differences across SPEC indices, have been tested for statistical significance
using the Anderson-Darling test (Supplemental Information S.6).

Let us first consider breakthrough, renewing and exhausting domains. If we pick a firm
at random out of each of the samples of new innovators, there is a larger probability that the
randomly selected firm has a strong comparative advantage in those areas if we sample it from
the Asian tiger group rather than the US or Japanese ones. Yet differences across the related
distributions are statistically significant only for renewing domains. They are close to be signif-
icant in breakthrough and exhausting domains, when we compare Asian tigers’ new innovators
against US ones for the former and against Japanese new innovators for the latter. They are not
significant in when comparing Asian tiger’s and Japanese new innovators in breakthrough and
Asian tiger’s and American new innovators in exhausting domains. When we look at disruptive
areas, the pattern reverses. Japanese and US new innovators enjoy a strong comparative ad-
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Figure 9: Micro-founded specialization index for incumbents and new innovators by geographic
origin

vantage, whereas Asian tiger’s ones have a clear disadvantage. Yet, the Anderson-Darling test
reveals that the advantage over the Asian tigers is significant only for Japanese new innovators,
albeit close to significance for American ones. Differences are very mild for early growth and
mature areas, although statistically significant in the case of early development domains for
Japan. The advantage enjoyed by Asian tiger’s new innovators over US and Japanese ones is
consistent with the anecdotic knowledge of the development of the Semiconductor industry in
these countries. As shown by Mathews and Cho 1999, Chang et al. 1994 and Cho et al. 1998,
the strategy adopted by firms from Taiwan and Korea consisted in accessing relatively obsolete
foreign technologies and reverse-engineer them to start their learning path. To the contrary,
their comparative advantage in breakthrough domains, although not significant, deserves more
attention. In particular, from the point of view of catching-up and knowledge upgrading, it is
interesting to know when this advantage started to emerge.

Thus far, we provided a static analysis, due to the lack of a sufficient number of observations
to have period-by-period reliable estimations for the new innovators. We can overcome this
constraint by looking at all firms together, regardless of whether they are new or incumbent
innovators. This way we are able to show a dynamic picture of micro-founded specialization
patterns at the country level. Figure 10 shows the trend of the SPEC index over time across
geographic areas.
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Figure 10: The evolution of the micro-founded specialization index over time

A dynamic look at specialization patterns reveals that the comparative strength of Asian
tigers in breakthrough domains is recent and started in the 2000s. Up to the end of the 1990s,
firms from Korea, Taiwan and Singapore, were comparatively more specialized in renewing
and exhausting domains. Interestingly, an increase of the SPEC index for these firms can also
be observed in the 2000s for disruptive areas. What is also striking is that US and Japanese
firms’ comparative technological advantage in breakthrough areas (and disruptive ones, for
Japan only) is decreasing in the 2000s in favour of areas at later stages of their life cycle (mature,
renewing and exhausting). More information on the technical nature of each of the technology
domains identified in the 2001-2006 period is included in the Supplemental Information S.7.

These results shed light on the different strategies followed by the mayor players of the
semiconductor industry. New entrants from emerging countries successfully catch-up with the
leaders by initially specializing in renewing and exhausting technology domains. These areas
of engineering research were left free by US and Japanese firms, which, up to the mid-1990s,
were comparatively more specialized in disruptive and early growth areas. However, in the
2000s latecomer countries began to develop a distinct specialization in breakthrough areas and
also an increasing focus on disruptive ones, though maintaining a comparative technological ad-
vantage in exhausting areas. A closer look at the data reveals that the large values of the SPEC
index for Taiwan, Korea and Singapore in breakthrough and disruptive areas in the 2000s, is
mainly due to their specialization in emerging areas belonging to the second component of the
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NMPs, rather than the first one. This highlights their ability to anticipate a possible radical
change in the trajectory (in favour of semiconductor applications for devices such as e-readers,
tablets, LCD monitors) and testify the effort they devoted to build capabilities in the new fron-
tier thin-film transistor LCD technologies (Hung 2006; Chang 2005). These findings describe
a clear picture of the learning strategies followed by latecomers in the Semiconductor industry.
As shown in Triulzi (2015, Chapter 3), up to the end of the 1990s, firms from Taiwan, Ko-
rean and Singapore were primarily focused on following well-established approaches to tackle
central engineering problems in the semiconductors. However, the findings of the life-cycle
analysis showed that, at the same time they were trying to renew these relatively older domains
by mixing well-known approaches to problem solving with new ideas. These allowed latecomer
firms building strong technological capabilities that quickly shift their comparative advantage
to breakthrough areas in the early 2000s. This is confirmed by the ranking-changing strategies
followed by some of these firms in the first half of the 2000s. Therefore, we can conclude that
successful technological catching-up by firms from latecomer countries took a form that com-
bined what Lee 2013 and Lee and Lim 2001 called path-creating and stage-skipping strategy.
By focusing on renewing established engineering trajectories, they build sufficient technolog-
ical capabilities to explore new ones. In contrast, for players from leading or early entrant
countries (US and Japan), comparative advantage patterns reflect Klepper’s industry life cycle
theory. Entry focuses on emerging technologies, with a stronger advantage in disruptive do-
mains, as predicted by Christensen 1997. For the sake of keeping the analysis concise, we did
not show details on comparative advantage for individual firms. The interested reader can find
a series of tables reporting SRTA indexes calculated for the mayor firms in the industry in the
Supplemental Information S.8.

7 Discussion and Conclusions

Catching-up and leapfrogging in high-tech industries strongly depends on the direction of tech-
nological change and on the emergence of new technology domains and decline of old ones. In
fast changing technical and business landscapes today’s capabilities do not necessarily ensure
long-run survival. This highlights the importance of studying the relationship between tech-
nology life cycle and the dynamic of comparative advantage patterns of new and incumbent
innovators. Our study is one of the few empirical contributions, together with Lee 2013, to the
discussion of technology life cycles at the domain level. Patent citation networks offer a fertile

35



ground for such analysis. We theoretically defined the life-cycle of technology domains and its
relation with product and industry life-cycles. Furthermore, we built a methodology to identify
technology domains and trace their life-cycle by means of disentangling the complexity of large
patent citation networks. This provided new insights on the dynamics of comparative advantage
in the semiconductor industry.

First, we confirmed the empirical validity of entry and comparative advantage predictions
from the theories of industry life-cycle and disruptive technologies. Second, we showed that,
until the end of the 1990s, US and Japanese firms were comparatively better in emerging tech-
nology domains, whereas firms from Taiwan, Korea and Singapore, tended to specialize in
relatively older domains, mainly in their mature, renewing and exhausting stages. These com-
parative advantage patterns changed strongly in the beginning of the 2000s, when firms from
the three Asian tigers, next to their advantage in declining domains they also started develop-
ing a comparative advantage in emerging ones. This proves that latecomer firms from these
countries have engaged in a mix between path-creating and stage-skipping catching-up, as the-
orized by Lee and Lim 2001. These results are also in accordance with the empirical analysis
of technology cycle time and catching-up made by Lee 2013 in which the author shows that
the successful catching-up of Korea and Taiwan built on upgrading the specialization pattern
from older to newer technologies, exploiting short-life cycles. Our findings are also in line with
the description of how Korean and Taiwanese firms managed to build their technological ca-
pabilities, as discussed by Chang et al. 1994, Mathews and Cho 1999, Cho et al. 1998, Chang
and Tsai 2002, Bell Jr and Juma 2008 and Hobday 2000. These authors agree in highlighting
the instrumental role played by Korean and Taiwanese firms’ early specialization in old foreign
licensed technologies to develop internal RD capabilities lately used to upgrade their special-
ization. The Asian tigers’ relatively strong position in domains that were emerging in the early
2000s, testifies their ability to be forward-looking.

Yet, it is important to notice that in this work we did not assess the future impact of emerg-
ing domains. Our goal was to analyse whether new entrants’ comparative advantage in those
domains significantly differs from incumbents’ one. It is needless to mention that emerging
technologies are intrinsically risky and there is no guarantee that their development will be sus-
tained in the future. A detailed analysis of how emerging areas affect the future direction of the
technological trajectories goes beyond the scope of this paper. However, a preliminary analy-
sis, that was not reported here, revealed that some areas did generate sustained new trajectories
whereas others failed to do so. Since this has crucial implication for catching-up, a full analysis
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of the knowledge interaction between technology domains and the transferability of capabilities
between areas is an open question for future research.

Finally, we want to praise the strength of using interdisciplinary approaches to disentangle
today’s technological and economic complexity. Several tools have been developed for this
purpose, mainly at the intersection of economics with mathematics, physics and network sci-
ence. The application of economic thinking to a combination of these tools, the community
detection technique and the network of main paths, proved to be extremely insightful to anal-
yse an economic question that occupied scholars at least since Vernon’s seminal work (Vernon
1966), namely the one of the relationship between life cycles and comparative advantage. The
correspondence of our findings with the extensive anecdotal knowledge of catching-up in the
semiconductor industry contributes to validate our methodology to trace the life-cycle of tech-
nology domains and make a case for its use to study the technology dynamics of other high-tech
industries or apply it at a wider scale to the question of the co-evolution of technologies.
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1 Alternative beginning and end of the archetypal 

life-cycle of technology domains 

 
Figure S. 1: Archetypal life-cycle of a given technology domain with resistance 

to decline 

 

 
Figure S. 2: Archetypal life-cycle of a given technology domain starting with a 

disruption 
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2 Network Size over time 

  76-80 76-85  76-90 76-95 76-00 76-06 

Whole network - number of patents 2079  5631  12533  26853  54086 114097 

Whole network - number of citations 2712 13310  40255 102957 272843 779076 

Main component -number of patents 1703  5385  12348  26686  53874 113756 

Main component -number of citations 2469 13164  40145 102864 272728 778890 

Network of Main Paths - number of 

patents 

1445  3490   6042  10107  15387  23428 

Network of Main Paths - number of 

citations 

1403  3291   5697   9489  14588  22077 

Network of Main Paths -Main 

Component – number of patents 

 694  1540   2678   2043   4557   3544 

Network of Main Paths - Main 

Component – number of citations 

 756  1597   2734   2064   4617   3562 

Table S. 1: Basic network statistics 
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3 Plots of the main component of the network of 

main paths (NMPs) 

 
Figure S. 3: The space of technology domains between 1976 and 1980 
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Figure S. 4: The space of technology domains between 1976 and 1985 

 

 
Figure S. 5: The space of technology domains between 1976 and 1990 
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Figure S. 6: The space of technology domains between 1976 and 1995 

 

 
Figure S. 7: The space of technology domains between 1976 and 2000 
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Figure S. 8: The space of technology domains between 1976 and 2006 

 

4 Number of NMPs patents by new innovators and 

incumbents over time  

 
Figure S. 9: Number of new innovators and incumbentsand concentration index 
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Figure S. 10: New entrant innovators by country of origin 

5 Newman’s community detection algorithm 

To identify technology domains we used Newman’ s algorithm (Newman, 

2004). The algorithm maximizes modularity Q, which is defined as follows: 

 

(S.1) 

Where eii is the fraction of edges falling within community i and ai
2 is equal 

to the squared sum of edges falling between communities, as  . 

Newman (2004) explains that modularity Q can be also calculated as the 

fraction of edges that fall within communities, minus the expected value of the 

same quantity if edges fall at random without regard for the community 

structure. The author highlights that if a particular division gives no more 

within-community edges than would be expected by random chance modularity 

Q would be equal to zero. This approach allows optimizing modularity Q 

without the need to try all possible partition combinations (which would take 

an amount of time exponential to the number of nodes in the network). The 

optimization approach starts from the worse possible combination. It then 

begins an iterative aggregation process that stops when the increase of 

modularity becomes negative. Obviously, as explained by Newman (2004), since 

the joining of a pair of communities between which there are no edges at all 

can never result in an increase in Q, one needs only consider those pairs 

between which there are edges. Then the change in Q upon joining two 

communities is given by: 

 
(A.2) 
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One possible drawback of Newman’ s algorithm is that it is not specifically 

thought for citations network, which have the peculiarity to be acyclical 

directed graphs. Yet, symmetrizing the adjacency matrix makes citations a 

univocal measure of relatedness from patent to patent. This allows using the 

algorithm. The second possible limitation consists in the fact that a real-world 

citation networks are sparser than the random counterparts that are used as 

benchmark to maximize modularity. This is due to the well-known shape of the 

distribution of citation-lags for patent networks. Jaffe and Trajtenberg (2002) 

showed that citations received by the average patent peaks after 3-4 years and 

then sharply decline. This is because constant streams of technical 

improvements make older patents irrelevant for the legal definition of the prior-

art. Potentially this bias can identify communities on the network purely based 

on their age structure of patent citations, without considering the true 

relationship of similarity that might exist with older patents. To assess the 

strength of this bias we analysed the age structure of the communities (i.e. 

technology domains) identified by the algorithm. Results are shown in Error! 

Reference source not found..  The domains’  density of patents for each time 

cohort is shown by mean of a density plot where darker colours represent 

higher density. We can clearly see that a few domains that are time dependent 

are visible only in the last period. Since there are few examples we cannot 

discard the possibility that these domains are indeed declining, i.e. their 

underlying engineering problems failed to attract further attention. The fact 

that age dependent communities are very rare proves that the potential bias in 

the algorithm does not affect the quality and validity of our results. 

 

 
Figure S. 11: Age structure of technology domains 
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6 Anderson-Darling test results 

In this section, we report the results of the non-parametric two-sample 

Anderson-Darling test for statistical difference. 

 

Andersen-Darling test Ninc Nnew Test result p-value 

Breakthrough 201 213 H1:Fnew(SRTA) ≠ Finc(SRTA) 0.0000 

Disruptive 381 368 H1:Fnew(SRTA) ≠ Finc(SRTA) 0.0039 

Early growth 266 287 H1:Fnew(SRTA) ≠ Finc(SRTA) 0.0000 

Mature 381 368 H1:Fnew(SRTA) ≠ Finc(SRTA) 0.0000 

Renewing 336 314 H1:Fnew(SRTA) ≠ Finc(SRTA) 0.0000 

Exhausting 336 314 H0: Fnew(SRTA) = Finc(SRTA) 0.8460 

Table S. 2: Anderson-Darling test for distributions in Figure 6 

 

 
Table S. 3: Anderson-Darling test for distributions in Figure 8 
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7 Topic analysis of the main technology domains of 

the Semiconductor Industry between 2001 and 2006 

In this section, we report the title of the most central patents within each 

technology domain identified by the Newman’ s modularity maximization 

algorithm. 

 

Table S. 4: Topic analysis of the main technology domains of the 

Semiconductor industry between 2001 and 2006 

Patent grant 

year 

Cluster LC stage NMP 

comp 

PathC Title Assignee 

6451641 2002 3 Exhausting 1 13.40 Non-reducing process for 

deposition of polysilicon 

gate electrode over high-K 

gate dielectric material 

AMD 

6297539 2001 3 Exhausting 1 2.49 Zicronium or hafnium 

oxide doped with calcium, 

strontium, aluminum, 

lanthanum, yttrium, or 

scandium 

SHARP 

6407435 2002 3 Exhausting 1 2.16 Because the layers reduce 

the effects of crystalline 

structures within 

individual layers, the 

overall tunneling current 

is reduced.  

SHARP 

6207589 2001 3 Exhausting 1 0.20 Method of forming a 

doped metal oxide 

dielectric film  

SHARP 

6297107 2001 6 Exhausting 1 12.96 High dielectric constant 

materials as gate 

dielectrics  

AMD 

6200865 2001 6 Exhausting 1 7.57 Use of sacrificial dielectric 

structure to form 

semiconductor device with 

a self-aligned threshold 

adjust and overlying low-

resistance gate  

AMD 

6391785 2002 7 Mature 1 1.85 Method for bottomless 

deposition of barrier 

layers in integrated circuit 

metallization schemes  

ASM/IM

EC 

6184128 2001 7 Mature 1 2.61 Method using a thin resist 

mask for dual damascene 

stop layer etch  

AMD 

6468924 2002 7 Mature 1 0.73 Methods of forming thin 

films by atomic layer 

SAMSUN

G 
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Patent grant 

year 

Cluster LC stage NMP 

comp 

PathC Title Assignee 

deposition 

6750066 2004 7 Mature 1 2.32 Precision high-K intergate 

dielectric layer  

AMD 

6534395 2003 7 Mature 1 0.83 Method of forming graded 

thin films using 

alternating pulses of 

vapor phase reactants  

ASM 

6424001 2002 9 Renewing 1 1.34 Flash memory with ultra 

thin vertical body 

transistors 

MICRON 

6639268 2003 9 Renewing 1 0.61 Flash memory with ultra 

thin vertical body 

transistors  

MICRON 

6680508 2004 9 Renewing 1 1.36 Vertical floating gate 

transistor  

MICRON 

6903367 2005 9 Renewing 1 0.32 Programmable memory 

address and decode 

circuits with vertical body 

transistors  

MICRON 

6979857 2005 9 Renewing 1 0.32 Apparatus and method 

for split gate NROM 

memory 

MICRON 

6303523 2001 11 Exhausting 1 1.02 Plasma processes for 

depositing low dielectric 

constant films 

APPLIE

D 

MATERI

ALS 

6410462 2002 11 Exhausting 1 0.57 Method of making low-K 

carbon doped silicon oxide 

SHARP 

6287990 2001 11 Exhausting 1 0.90 CVD plasma assisted low 

dielectric constant films 

APPLIE

D 

MATERI

ALS 

6534397 2003 12 Disruptive 1 1.65 Pre-treatment of low-k 

dielectric for prevention of 

photoresist poisoning  

AMD 

6656837 2003 12 Disruptive 1 1.78 Method of eliminating 

photoresist poisoning in 

damascene applications  

APPLIE

D 

MATERI

ALS 

6406994 2002 12 Disruptive 1 1.79 Triple-layered low 

dielectric constant 

dielectric dual damascene 

approach  

CHART

ERED 

6593247 2003 12 Disruptive 1 0.87 Method of depositing low 

k films using an oxidizing 

plasma  

APPLIE

D 

MATERI

ALS 
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Patent grant 

year 

Cluster LC stage NMP 

comp 

PathC Title Assignee 

6784119 2004 12 Disruptive 1 0.37 Method of decreasing the 

K value in SIOC layer 

deposited by chemical 

vapor deposition 

APPLIE

D 

MATERI

ALS 

6979855 2005 15 Renewing 1 8.45 High-quality 

praseodymium gate 

dielectrics 

MICRON 

7045430 2006 15 Renewing 1 3.68 Atomic layer-deposited 

LaAlO3 films for gate 

dielectrics  

MICRON 

6767795 2004 15 Renewing 1 6.70 Highly reliable amorphous 

high-k gate dielectric 

ZrOXNY  

MICRON 

6921702 2005 15 Renewing 1 5.47 Atomic layer deposited 

nanolaminates of 

HfO2/ZrO2 films as gate 

dielectrics 

MICRON 

6660657 2003 15 Renewing 1 0.68 Methods of incorporating 

nitrogen into silicon-

oxide-containing layers 

MICRON 

6429061 2002 16 Renewing 2 5.66 Complimentary metal 

oxide semiconductor 

(cmos); producing higher 

perfomance device; 

forming a relaxed silicon 

germanium layer with 

isolation and well implant 

regions  

IBM 

6291845 2001 16 Renewing 2 1.87 Fully-dielectric-isolated 

FET technology  

STMICR

OELECT

RONICS 

6841457 2005 16 Renewing 2 1.42 Use of hydrogen 

implantation to improve 

material properties of 

silicon-germanium-on-

insulator material made 

by thermal diffusion  

IBM 

6724008 2004 16 Renewing 2 1.07 Relaxed silicon 

germanium platform for 

high speed CMOS 

electronics and high speed 

analog circuits  

AMBER

WAVE 

6713326 2004 16 Renewing 2 0.91 Process for producing 

semiconductor article 

using graded epitaxial 

growth  

MIT 

6524920 2003 17 Exhausting 2 22.14 Low temperature process 

for a transistor with 

AMD 

INC 
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Patent grant 

year 

Cluster LC stage NMP 

comp 

PathC Title Assignee 

elevated source and drain  

6300201 2001 17 Exhausting 2 6.20 Method to form a high K 

dielectric gate insulator 

layer, a metal gate 

structure, and self-aligned 

channel regions, post 

source/drain formation  

CHART

ERED 

6194748 2001 17 Exhausting 2 4.46 MOSFET with 

suppressed gate-edge 

fringing field effect  

AMD 

INC 

6171910 2001 17 Exhausting 2 2.81 Method for forming a 

semiconductor device  

MOTOR

OLA 

6380043 2002 17 Exhausting 2 1.71 Low temperature process 

to form elevated drain 

and source of a field effect 

transistor having high-K 

gate dielectric  

AMD 

INC 

6933525 2005 18 Breakthroug

h 

2 1.12 Display device and 

manufacturing method of 

the same  

HITACH

I 

7084428 2006 18 Breakthroug

h 

2 0.88 Transistor, integrated 

circuit, electro-optic 

device, electronic 

instrument and method of 

manufacturing a 

transistor  

SEIKO 

EPSON 

CORP 

6218219 2001 18 Breakthroug

h 

2 0.60 Semiconductor device and 

fabrication method 

thereof  

S.E.L 

6407431 2002 18 Breakthroug

h 

2 0.48 Semiconductor device and 

fabrication method 

thereof  

S.E.L 

6762468 2004 18 Breakthroug

h 

2 0.21 Semiconductor device and 

method of manufacturing 

the same  

TOSHIB

A 

6251738 2001 19 Exhausting 2 0.92 Process for forming a 

silicon-germanium base of 

heterojunction bipolar 

transistor  

IBM 

6521502 2003 20 Renewing 2 12.74 Solid phase epitaxy 

activation process for 

source/drain junction 

extensions and halo 

regions  

AMD 

INC 

6365476 2002 20 Renewing 2 8.07 Laser thermal process for 

fabricating field-effect 

transistors  

ULTRAT

ECH 

STEPPE

R 
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Patent grant 

year 

Cluster LC stage NMP 

comp 

PathC Title Assignee 

6660605 2003 20 Renewing 2 6.72 Method to fabricate 

optimal HDD with dual 

diffusion process to 

optimize transistor drive 

current junction 

capacitance, tunneling 

current and channel 

dopant loss  

TEXAS 

INSTRU

MENTS 

6225173 2001 20 Renewing 2 5.80 Recessed channel 

structure for 

manufacturing shallow 

source/drain extensions 

AMD 

INC 

6218250 2001 20 Renewing 2 5.41 Method and apparatus for 

minimizing parasitic 

resistance of 

semiconductor devices  

AMD 

INC 

6440793 2002 21 Disruptive 2 6.47 Vertical MOSFET  IBM 

6261894 2001 21 Disruptive 2 3.63 Method for forming dual 

workfunction high-

performance support 

MOSFETs in EDRAM 

arrays  

IBM 

6964897 2005 21 Disruptive 2 2.28 SOI trench capacitor cell 

incorporating a low-

leakage floating body 

array transistor  

IBM 

7122840 2006 21 Disruptive 2 1.23 Image sensor with optical 

guard ring and fabrication 

method thereof  

TSMC 

7098146 2006 21 Disruptive 2 1.11 Semiconductor device 

having patterned SOI 

structure and method for 

fabricating the same  

TOSHIB

A 

6703648 2004 22 Disruptive 2 18.24 Strained silicon PMOS 

having silicon germanium 

source/drain extensions 

and method for its 

fabrication  

AMD 

INC 

6743684 2004 22 Disruptive 2 14.29 Method to produce 

localized halo for MOS 

transistor  

TEXAS 

INSTRU

MENTS 

6881632 2005 22 Disruptive 2 10.56 Method of fabricating 

CMOS inverter and 

integrated circuits 

utilizing strained surface 

channel MOSFETS  

AMBER

WAVE 

7074623 2006 22 Disruptive 2 8.70 Methods of forming 

strained-semiconductor-

AMBER

WAVE 
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Patent grant 

year 

Cluster LC stage NMP 

comp 

PathC Title Assignee 

on-insulator finFET 

device structures  

7122449 2006 22 Disruptive 2 7.24 Methods of fabricating 

semiconductor structures 

having epitaxially grown 

source and drain elements  

AMBER

WAVE 

6190977 2001 24 Exhausting 2 28.94 Method for forming 

MOSFET with an 

elevated source/drain  

TEXAS 

INSTRU

MENTS - 

ACER 

6303450 2001 24 Exhausting 2 8.48 CMOS device structures 

and method of making 

same  

IBM 

6284657 2001 25 Mature 2 1.52 Non-metallic barrier 

formation for copper 

damascene type 

interconnects  

CHART

ERED 

7122442 2006 25 Mature 2 0.47 Method and system for 

dopant containment  

TEXAS 

INSTRU

MENTS 

6611045 2003 25 Mature 2 0.17 Method of forming an 

integrated circuit device 

using dummy features 

and structure thereof  

MOTOR

OLA 

6642579 2003 25 Mature 2 0.16 Method of reducing the 

extrinsic body resistance 

in a silicon-on-insulator 

body contacted MOSFET  

IBM 

6864155 2005 25 Mature 2 0.14 Methods of forming 

silicon-on-insulator 

comprising integrated 

circuitry, and wafer 

bonding methods of 

forming silicon-on-

insulator comprising 

integrated circuitry 

MICRON 

6555839 2003 26 Renewing 2 1.43 Buried channel strained 

silicon FET using a 

supply layer created 

through ion implantation  

AMBER

WAVE 

6350993 2002 26 Renewing 2 0.41 High speed composite p-

channel Si/SiGe 

heterostructure for field 

effect devices  

IBM 

6207977 2001 26 Renewing 2 0.04 Vertical MISFET devices  IMEC 

6204126 2001 27 Exhausting 2 2.52 Method to fabricate a 

new structure with multi-

self-aligned for split-gate 

TSMC 
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Patent grant 

year 

Cluster LC stage NMP 

comp 

PathC Title Assignee 

flash  

6573126 2003 28 Renewing 2 0.81 Process for producing 

semiconductor article 

using graded epitaxial 

growth  

MIT 

6323108 2001 28 Renewing 2 0.24 Fabrication ultra-thin 

bonded semiconductor 

layers 

US 

NAVY 

6261929 2001 28 Renewing 2 0.23 Methods of forming a 

plurality of semiconductor 

layers using spaced trench 

arrays  

NORTH

CAR. 

ST. UNI. 

6191007 2001 28 Renewing 2 0.12 Method for manufacturing 

a semiconductor substrate  

DENSO 

CORP 

LTD 

6235567 2001 28 Renewing 2 0.06 Silicon-germanium bicmos 

on soi  

IBM 

6413802 2002 29 Disruptive 2 29.61 Finfet transistor 

structures having a 

double gate channel 

extending vertically from 

a substrate and methods 

of manufacture  

UNIV 

OF 

CALIFO

RNIA 

6214670 2001 29 Disruptive 2 18.48 Method for manufacturing 

short-channel, metal-gate 

CMOS devices with 

superior hot carrier 

performance  

TSMC 

6686231 2004 29 Disruptive 2 13.00 Damascene gate process 

with sacrificial oxide in 

semiconductor devices  

AMD 

INC 

7084018 2006 29 Disruptive 2 10.55 Sacrificial oxide for 

minimizing box undercut 

in damascene FinFET  

AMD 

INC 

6962843 2005 29 Disruptive 2 8.79 Method of fabricating a 

finfet  

IBM 
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8 SRTA tables at the firm level 

In this section we report the SRTA values calculated for a selection of firms 

from the US, Japan, Korea, Taiwan and Singapore. To keep the analysis short 

we do that only for the last three periods. Tables from Table S.5 to S.12 report 

the SRTA values for the main US, Japanese, Taiwanese, Korean and 

Singaporean players over time. We highlight values of the SRTA greater than 

0.2 in bold. Firms are distinguished between new and incumbent innovators 

and also based on their business area (IDM=Integrated Device Manufacturer, 

GRO=Government Research Organization, NGRO=Non-Governmental 

Research Organization, Equipm.=Equipment supplier). The tables confirm 

comparative technological advantage patterns as discussed in Subsection 6.2. 

However, they provide further details for those interested to track comparative 

advantage trends for particular firms or research institutes. 

 

Table S. 5: SRTA for the top Taiwanese, Korean and Singaporean firms (1991-

1995) 

Company New Inn vs 

Inc 

Type #Pate

nts 

Disrupti

ve 

Early 

growth 

Mature Renewi

ng 

Exhaust

ing 

UMC (TW) New 

innovator 

Foundr

y 

31 -0,477 0,230 -0,087 0,597 0,597 

SAMSUNG 

(KR) 

Incumbent IDM 8 0,046 0,300 -0,365 -1,000 -1,000 

TITRI (TW) Incumbent GRO 7 0,112 -0,171 -0,306 0,490 -1,000 

HYUNDAI 

ELEC. (KR) 

New 

innovator 

IDM 7 -0,523 0,359 -0,306 0,708 -1,000 

LG ELEC. (KR) New 

innovator 

IDM 7 -0,230 -0,171 0,360 -1,000 -1,000 

TSMC (TW) New 

innovator 

Foundr

y 

6 -0,155 0,245 0,107 -1,000 -1,000 

CHARTERED 

(SG) 

New 

innovator 

Foundr

y 

4 -1,000 0,664 -1,000 -1,000 -1,000 

KETRI (KR) Incumbent GRO 3 0,188 -1,000 0,107 -1,000 -1,000 

WINBOND 

(TW) 

New 

innovator 

IDM 2 -1,000 -1,000 0,576 -1,000 -1,000 

 

Table S. 6: SRTA for the top US and Japanese players (1991-1995) 

Company New Inn vs 

Inc 

Type #Pate

nts 

Disruptiv

e 

Early 

growth 

Matur

e 

Renewi

ng 

Exhausti

ng 

TEXAS INSTR. 

(US) 

Incumbent IDM 39 -0,053 -0,223 0,177 -0,312 0,355 

MOTOROLA 

(US) 

Incumbent IDM 38 -0,040 -0,211 -0,010 0,235 0,623 

MICRON (US) New 

innovator 

IDM 38 0,096 0,132 -0,546 0,235 0,037 

IBM (US) Incumbent IDM 35 0,159 -0,005 -0,221 -1,000 -1,000 

MITSUBISHI Incumbent IDM 33 -0,073 -0,052 0,189 -0,234 -1,000 
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Company New Inn vs 

Inc 

Type #Pate

nts 

Disruptiv

e 

Early 

growth 

Matur

e 

Renewi

ng 

Exhausti

ng 

(JP) 

TOSHIBA (JP) Incumbent IDM 33 -0,202 -0,538 0,340 0,301 -1,000 

NEC (JP) Incumbent IDM 22 -0,335 -0,052 0,375 -1,000 -1,000 

AT&T (US) Incumbent IDM 17 0,016 0,186 -0,207 0,093 -1,000 

SONY CORP 

(JP) 

Incumbent IDM 17 -0,051 -0,264 0,273 -1,000 -1,000 

FUJITSU (JP) Incumbent IDM 13 0,083 -0,135 -0,076 0,223 -1,000 

HITACHI (JP) Incumbent Equipm

. 

11 0,089 -0,052 0,007 -1,000 -1,000 

NATIONAL 

SEMICOND. 

(US) 

Incumbent IDM 11 -0,002 -1,000 0,340 -1,000 -1,000 

HARRIS (US) Incumbent User 7 0,374 -1,000 -1,000 -1,000 -1,000 

LSI LOGIC (US) Incumbent Fabless 7 0,305 -0,171 -1,000 -1,000 -1,000 

APPLIED 

MATERIALS 

(US) 

Incumbent Equipm

. 

6 0,188 0,245 -1,000 -1,000 -1,000 

HUGHES (US) Incumbent User 6 -0,465 -1,000 0,425 0,547 -1,000 

MATSUSHITA 

(JP) 

Incumbent IDM 6 -0,465 0,245 0,107 -1,000 0,744 

OKI ELECTRIC 

(JP) 

Incumbent IDM 6 -1,000 0,245 0,425 -1,000 -1,000 

SHARP (JP) Incumbent IDM 6 0,046 -0,096 -0,234 0,547 -1,000 

SIEMENS (DE) Incumbent IDM 6 0,046 -0,096 0,107 -1,000 -1,000 

HONEYWELL 

(US) 

Incumbent IDM 5 0,274 -0,005 -1,000 -1,000 -1,000 

SEIKO EPSON 

(JP) 

Incumbent IDM 5 -0,390 0,597 -1,000 -1,000 -1,000 

SEMICOND. 

ENERGY (JP) 

Incumbent NGRO 5 -0,065 0,329 -0,147 -1,000 -1,000 

 

Table S. 7: SRTA for the top Taiwanese, Korean and Singaporean players 

(1996-2000) 

Company New Inn 

vs Inc 

Type #Pate

nts 

Break-

through 

Disruptiv

e 

Early  

growth 

Matu

re 

Renewi

ng 

Exhaust

ing 

TSMC (TW) Incumbe

nt 

Foun

dry 

92 -0,429 -0,310 -0,018 0,004 0,361 -1,000 

UMC (TW) Incumbe

nt 

Foun

dry 

77 -0,725 -0,653 0,089 -

0,248 

0,101 0,748 

SAMSUNG 

(KR) 

Incumbe

nt 

IDM 31 -0,117 -1,000 0,029 0,636 -0,033 -1,000 

CHARTERED 

(SG) 

Incumbe

nt 

Foun

dry 

29 -0,224 -0,284 -0,151 0,231 0,385 0,804 

VANGUARD 

(TW) 

New 

innovator 

Foun

dry 

25 -1,000 -1,000 0,160 -

1,000 

0,075 -1,000 

LG ELEC. 

(KR) 

Incumbe

nt 

IDM 21 0,187 -0,130 -0,122 0,377 0,161 -1,000 

HYUNDAI 

ELEC. (KR) 

Incumbe

nt 

IDM 17 -0,470 -1,000 0,184 -

1,000 

-0,402 -1,000 
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ACER (TW) New 

innovator 

IDM 13 -1,000 0,426 0,065 -

1,000 

0,055 -1,000 

TITRI (TW) Incumbe

nt 

GRO 9 -0,190 -1,000 -0,045 -

1,000 

0,415 -1,000 

MOSEL 

VITELIC (TW) 

New 

innovator 

IDM 6 0,011 -1,000 -0,098 -

1,000 

0,415 -1,000 

WINBOND 

(TW) 

Incumbe

nt 

IDM 5 0,102 -1,000 -0,007 -

1,000 

0,184 -1,000 

 

Table S. 8: SRTA for the top US and Japanese players (1996-2000) 

Company New 

Inn vs 

Inc 

Type #Pat

ents 

Break-

throug

h 

Disruptiv

e 

Early  

growth 

Matu

re 

Renewi

ng 

Exhaust

ing 

AMD (US) Incumb

ent 

IDM 93 -0,117 -0,704 0,029 0,332 0,111 -1,000 

MICRON (US) Incumb

ent 

IDM 66 0,011 -0,606 0,068 0,169 -0,205 -1,000 

NEC (JP) Incumb

ent 

IDM 49 0,239 -0,504 -0,031 -

0,027 

-0,059 -1,000 

IBM (US) Incumb

ent 

IDM 37 0,140 -0,392 0,053 0,113 -0,436 -1,000 

TEXAS INSTR. 

(US) 

Incumb

ent 

IDM 36 -0,190 -1,000 0,086 0,126 0,004 -1,000 

MOTOROLA (US) Incumb

ent 

IDM 35 0,102 -1,000 -0,007 0,598 -0,093 -1,000 

TOSHIBA (JP) Incumb

ent 

IDM 25 -0,010 -1,000 0,084 -

1,000 

-0,069 -1,000 

MITSUBISHI (JP) Incumb

ent 

IDM 21 0,078 -1,000 0,046 -

1,000 

0,018 -1,000 

MATSUSHITA 

(JP) 

Incumb

ent 

IDM 18 0,463 -1,000 -0,098 0,441 -1,000 -1,000 

NATIONAL 

SEMICOND. (US) 

Incumb

ent 

IDM 17 0,433 -1,000 -0,128 -

1,000 

-0,079 -1,000 

LSI LOGIC (US) Incumb

ent 

Fabless 16 -1,000 -1,000 0,244 -

1,000 

-1,000 -1,000 

SHARP (JP) Incumb

ent 

IDM 15 0,241 -1,000 -0,007 -

1,000 

-0,016 -1,000 

INTEL (US) Incumb

ent 

IDM 12 0,343 -1,000 -0,292 -

1,000 

0,415 -1,000 

LUCENT (US) New 

innovat

or 

User 12 -1,000 -1,000 0,202 -

1,000 

-0,246 -1,000 

SONY CORP (JP) Incumb

ent 

IDM 11 0,252 -1,000 0,023 0,617 -1,000 -1,000 

HITACHI (JP) Incumb

ent 

Equip

m. 

10 -0,240 0,236 0,070 -

1,000 

-0,159 -1,000 

VLSI TECH (US) Incumb

ent 

IDM 9 0,154 -1,000 0,046 -

1,000 

-0,107 -1,000 

SEMICOND. 

ENERGY (JP) 

Incumb

ent 

NGRO 7 -1,000 -1,000 0,244 -

1,000 

-1,000 -1,000 

YAMAHA (JP) Incumb

ent 

IDM 7 -0,066 -1,000 -0,031 -

1,000 

0,349 -1,000 
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Company New 

Inn vs 

Inc 

Type #Pat

ents 

Break-

throug

h 

Disruptiv

e 

Early  

growth 

Matu

re 

Renewi

ng 

Exhaust

ing 

SIEMENS (DE) Incumb

ent 

IDM 6 0,508 0,459 -0,570 0,771 -1,000 -1,000 

APPLIED 

MATERIALS (US) 

Incumb

ent 

Equip

m. 

5 0,421 -1,000 -0,007 -

1,000 

-1,000 -1,000 

UNIV 

CALIFORNIA 

(US) 

Incumb

ent 

Univers

ity 

5 -1,000 0,528 -0,007 -

1,000 

0,184 -1,000 

SANYO 

ELECTRIC (JP) 

Incumb

ent 

IDM 5 0,102 0,732 -0,207 -

1,000 

-1,000 -1,000 

AMERICAN 

SUPERCOND.(US) 

New 

innovat

or 

User 5 -1,000 0,883 -1,000 -

1,000 

-1,000 -1,000 

FOVEONICS (US) New 

innovat

or 

User 5 -1,000 -1,000 0,244 -

1,000 

-1,000 -1,000 

 

Table S. 9: SRTA for the top Taiwanese, Korean and Singaporean players 

(2001 2006   Main component of  the network of main paths) 

Company New Inn vs Inc Type #Patents Disruptive Mature Renewing Exhausting 

TSMC (TW) Incumbent Foundry 13 0,196 0,397 -0,165 -1,000 

SAMSUNG (KR) Incumbent IDM 9 -1,000 0,540 0,095 -1,000 

CHARTERED (SG) Incumbent Foundry 4 -0,017 0,580 -0,125 -1,000 

UMC (TW) Incumbent Foundry 4 0,318 -1,000 -0,125 -1,000 

HYUNDAI ELEC. (KR) Incumbent IDM 3 -1,000 -1,000 0,217 -1,000 

VANGUARD (TW) Incumbent Foundry 1 0,589 -1,000 -1,000 -1,000 

HYNIX (KR) New innovator IDM 1 -1,000 -1,000 0,217 -1,000 

 

Table S. 10: SRTA for the top US and Japanese players (2001 2006   Main 

component of the network of main paths) 

Company New Inn vs Inc Type #Patents Disruptive Mature Renewing Exhausting 

MICRON (US) Incumbent IDM 75 -0,276 -0,666 0,133 -1,000 

AMD (US) Incumbent IDM 31 -0,068 0,489 -0,141 0,509 

IBM (US) Incumbent IDM 22 -0,175 0,345 0,029 -1,000 

APPLIED MATERIALS (US) Incumbent Equipm. 17 0,494 -1,000 -0,691 0,578 

TEXAS INSTR. (US) Incumbent IDM 15 0,015 -1,000 0,065 -1,000 

MOTOROLA (US) Incumbent IDM 14 -0,567 0,036 0,142 -1,000 

SHARP (JP) Incumbent IDM 11 -1,000 -1,000 -0,005 0,841 

INFINEON (DE) Incumbent IDM 4 -0,017 -1,000 0,077 -1,000 

NOVELIUS SYSTEMS (US) New innovator Equipm. 4 0,487 -1,000 -0,440 -1,000 

LAM (US) Incumbent Equipm. 3 0,589 -1,000 -1,000 -1,000 

MATSUSHITA (JP) Incumbent IDM 3 0,126 -1,000 0,018 -1,000 

GENUS (US) New innovator Equipm. 3 -1,000 -1,000 0,217 -1,000 
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Table S. 11: SRTA for the top Taiwanese, Korean and Singaporean players 

(2001 2006   Second component of the network of main paths) 

Company New Inn vs Inc Type #Patents Breakthrough Disruptive Mature Renewing Exhausting 

TSMC (TW) Incumbent Foundry 40 -0,700 0,100 -0,131 0,000 0,084 

SAMSUNG (KR) Incumbent IDM 18 0,594 -0,347 -1,000 -0,091 -1,000 

LG PHILIPS (KR) New innovator IDM 13 0,752 -1,000 -1,000 -1,000 -1,000 

UMC (TW) Incumbent Foundry 10 -1,000 0,024 -1,000 0,333 -1,000 

HYUNDAI ELEC. (KR) Incumbent IDM 9 -1,000 0,152 0,262 -0,286 -1,000 

CHARTERED (SG) Incumbent Foundry 7 -1,000 -0,001 0,374 -0,167 0,742 

HANN STAR (TW) New innovator IDM 5 0,752 -1,000 -1,000 -1,000 -1,000 

KETRI (KR) Incumbent GRO 3 -1,000 0,076 -1,000 0,250 -1,000 

MACRONIOX  (TW) Incumbent IDM 3 -1,000 0,076 -1,000 0,250 -1,000 

CHUNGHWA (TW) New innovator IDM 3 0,752 -1,000 -1,000 -1,000 -1,000 

HYNIX (KR) New innovator IDM 3 -1,000 -0,264 0,673 0,250 -1,000 

TITRI (TW) Incumbent GRO 2 0,559 -1,000 -1,000 -1,000 0,919 

VANGUARD (TW) Incumbent Foundry 2 -1,000 0,272 -1,000 -1,000 -1,000 

AU OPTRONIC (TW) New innovator IDM 2 0,752 -1,000 -1,000 -1,000 -1,000 

 

Table S. 12: SRTA for the top US and Japanese players (2001 2006   Second 

component of the network of main paths) 

Company New Inn vs Inc Type 

#Patent

s Breakthrough Disruptive 

Matur

e 

Renewin

g Exhausting 

AMD (US) Incumbent IDM 81 -1,000 0,038 -0,026 0,152 0,401 

IBM (US) Incumbent IDM 73 -0,348 0,118 -0,226 -0,187 0,129 

TOSHIBA (JP) Incumbent IDM 33 -0,218 0,003 -1,000 0,250 -1,000 

TEXAS INSTR. (US) Incumbent IDM 23 -1,000 -0,046 0,335 0,270 -1,000 

SEMICOND. 

ENERGY (JP) Incumbent NGRO 18 0,725 -0,823 -1,000 -0,565 -1,000 

MICRON (US) Incumbent IDM 17 -1,000 0,061 -0,050 0,190 -1,000 

NEC (JP) Incumbent IDM 13 -0,296 0,193 0,084 -1,000 -1,000 

AMBERWAVE 

SYSTEMS (US) New innovator Equipm. 13 -1,000 0,147 -1,000 0,071 -1,000 

INTEL (US) Incumbent IDM 12 -1,000 0,186 -1,000 -0,412 0,595 

MITSUBISHI (JP) Incumbent IDM 9 0,404 -0,264 0,547 -0,286 -1,000 

SHARP (JP) Incumbent IDM 9 -0,120 -0,675 -1,000 0,591 -1,000 

MATSUSHITA (JP) Incumbent IDM 7 -1,000 0,272 -1,000 -1,000 -1,000 

FUJITSU (JP) Incumbent IDM 6 0,082 -0,264 0,673 -0,091 -1,000 

LSI LOGIC (US) Incumbent Fabless 6 -1,000 0,076 0,673 -1,000 -1,000 

MIT (US) Incumbent University 6 -1,000 -0,067 -1,000 0,429 -1,000 

CANON (JP) Incumbent User 5 -1,000 0,272 -1,000 -1,000 -1,000 

HITACHI (JP) Incumbent Equipm. 5 0,171 0,024 -1,000 0,000 -1,000 

HUGHES (US) Incumbent User 5 -1,000 0,272 -1,000 -1,000 -1,000 

MOTOROLA (US) Incumbent IDM 5 -1,000 0,024 0,509 -1,000 0,809 

FREESCALE (US) New innovator IDM 5 -1,000 0,166 -1,000 0,000 -1,000 

INFINEON (DE) Incumbent IDM 4 -1,000 0,134 0,587 -1,000 -1,000 
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APPLIED 

MATERIALS (US) Incumbent Equipm. 3 0,650 -0,264 -1,000 -1,000 -1,000 

OKI ELECTRIC (JP) Incumbent IDM 3 -1,000 -0,264 -1,000 0,538 -1,000 

SONY CORP (JP) Incumbent IDM 3 -1,000 0,076 -1,000 0,250 -1,000 

AGERE SYSTEM 

(US) New innovator Fabless 3 -1,000 0,076 -1,000 0,250 -1,000 

E INK (US) New innovator IDM 3 0,752 -1,000 -1,000 -1,000 -1,000 

HONEYWELL (US) Incumbent User 3 -1,000 0,272 -1,000 -1,000 -1,000 

RENESAS ELECTR. 

(JP) New innovator IDM 3 -1,000 -0,264 0,673 0,250 -1,000 

 


